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Context

» Supervised Machine Learning techniques have established new
performance standards for many NLP tasks

» Success crucially depends on the availability of annotated
in-domain data

» Not so common situation (e.g. under-resourced languages)

» What can we do then 7
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Context

Transfer

Ressource-rich language Less-ressourced language

» Cross-lingual transfer (weakly supervised learning)

Example

(DET) (NOUN) (ADP) (NOUN)

Making a Market for Scientific Research
Un marché pour recherche scientifique

D




State of the art

> In most cases this only results in partially annotated data

> Alternative ML techniques need to be designed

State of the art
» Partially observed CRF [Tackstrom et al., 2013]

» Posterior regularization [Ganchev and Das, 2013]

» Expectation maximization [Wang and Manning, 2014]



Contributions

1. We cast this problem in the framework of ambiguous
learning [Bordes et al., 2010, Cour et al., 2011]

2. We present a novel method to learn from ambiguous
supervision data

3. We show significant improvements over prior state of the art

4. We conduct a detailed analysis that allows us to identify the
limits of transfer-based methods and their evaluation
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Hypothesis

> In this work we focus on POS tagging

Strong assumption

Syntactic categories in the source language can be directly related
to the ones in the target one

Universal tagset [Petrov et al., 2012]

{ NouNn, VERB, ADJ, ApV, PRrRON, DET,
App, Num, Cony, Prr, ', X }

» All annotations are mapped to this universal tagset



Type and token constraints

Transfer-based methods only deliver partial and noisy supervision

» Heuristic filtering rules [Yarowsky et al., 2001]
» Graph-base projection [Das and Petrov, 2011]

» Combine with monolingual information
[Tackstrom et al., 2013]

Type and token constraints [Tackstrom et al., 2013]

1. type constraints from a dictionary

2. token constraints projected through alignment links
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Type constraints

From tag dictionaries

» Automatically extracted from WIKTIONARY

» Build from the projected labels across the aligned corpora

NOUN VERB
market walked
market
| l N
marché marché NOUN
VERB
NOUN VERB

» We use the intersection of the two above



Token constraints

1. Use the type constraints

Un marché pour la recherche

ADJ NOUN ADP~ DET NOUN
DET ‘ VERB /' NOU NOUN '\ VERB
NOUN PRON

PRON

scientifique

NOUN
ADJ



Token constraints

2. Use the alignment links from the parallel corpora

Making a Market for Scientific Research

S OS

Un marché pour recherche scientifique
ADJ NOUN ADP/ DET NOUN NOUN
DET \_VERB NOU NOUN ‘ VERB ADJ

NOUN PRON

PRON



Token constraints

3. Tag the source side (resource-rich)

VERB) (pET) (NOUN) (ADP) (NOUN NOUN
Making a Market for Scientific Research

VAR

Un marché pour recherche scientifique
ADJ NOUN ADP/ DET NOUN NOUN
DET VERB NOU NOUN \ VERB ADJ

NOUN PRON

PRON



Token constraints

4. Project labels if licensed by type constraints

VERB) (DET) (NOUN) (ADP) (NOUN NOUN
Making a Market for Scientific Research

S OS

Un marché pour recherche scientifique
ADJ NOUN ADP/ DET NOUN NOUN
DET \ MERB /A NOU NOUN \ VERB ABJ

NOUN PRON

PRON
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Modeling Sequences under Ambiguous
Supervision



Problem

Un marché pour la recherche scientifique
ADJ NOUN ADP/ DET NOUN NOUN
DET NOUN

NOUN PRON
PRON

» Gold labels: a set of possible labels of which only one is true

» How to learn from ambiguous supervision 7

» Can be cast in the framework of ambiguous learning
[Bordes et al., 2010, Cour et al., 2011]




History-based model: inference

X: Un marché pour la

Y: DET NOUN ADP 7

Principle

» Structured prediction is reduced to a sequence of
multi-classification problems



History-based model: inference

pour  |a

X: Un marché
y: DET NOUN ADP ?

y;k = arg max F(Xayay?—lay;r—%"')

y€{NOUN, VERB, ...}

Principle

» Structured prediction is reduced to a sequence of
multi-classification problems

> At each step, the decision is taken based on the input
structure and the so far partially tagged sequence



History-based model: training

» Linear classifier y; = argmax ¢, wlo(x, i, y, hi)
» Perceptron update

Full supervision
if y; # ¥ then

Wil <_Wt_d)(xa Ia}/Tahl)_‘_ ¢(X7 ia}A/ia hl)

» Heighten the gold label score at the cost of the wrongly
predicted one
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History-based model: training

> Linear classifier y; = arg maxc, wp(x, i, y, h;)

» Perceptron-like update

Ambiguous supervision
if v ¢ ) then

wt+1<_wf_¢( y/7 ' Z¢X yh I

ViEeY;

» Heighten the gold labels score at the cost of the wrongly
predicted one

» Theoretical guarantees for similar problems under mild
assumptions [Bordes et al., 2010, Cour et al., 2011]
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Experimental setup

» Experiments on 10 languages from different families

» English as the source side

Our method needs

> Parallel corpora Europarl, NIST, Open Subtitle
» English POS tagger Wapiti
» Crawled dictionary Wiktionary
> Labeled test data CoNLL'07, UDT v2.0, Treebanks
» Standard feature set



Results

CRF HBAL A [1] [2] [3] Unsupervised [1]

ar  33.9 27.9 -6.0 499 — — —
cs 11.6 10.4 -1.2 193 189 — —

de 122 8.8 -3.4 96 95 142 18.7
el 10.9 8.1 -2.8 9.4 105 20.8 28.2
es 10.7 8.2 -25 128 109 13.6 18.7

fi  12.9 13.3 +0.4 — — — —
fr 11.6 10.2 -1.4 125 116 — —
id 16.3 11.3 -5.0 — — — —
it 104 9.1 -1.3 10.1 10.2 135 31.9
sv. 11.6 10.1 -1.5 10.8 11.1 13.9 29.9

CRF Partially supervised CRF baseline [1] [Ganchev and Das, 2013]
[Tackstrém et al., 2013] [2] [Tackstrém et al., 2013]

HBAL Our History-based model [3] [Li et al., 2012]
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Discussion

Closer look on Spanish results:

State of the art 10.9%
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Discussion

Closer look on Spanish results:

State of the art 10.9%
Our model HBAL 52% @
Our model trained on supervised data (HBSL) 2.4%

Our method still falls short of a fully supervised model!



Why such a large gap 7

Noisy constraints

» Type constraints precision on test data is 94%

> l.e. using our type constraints as hard constraints at decoding
time yields at least 6% of errors

In this setting HBSL gets 7.3%

Noisy dictionaries
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Why such a large gap 7

Noisy constraints

» Type constraints precision on test data is 94%

> l.e. using our type constraints as hard constraints at decoding
time yields at least 6% of errors

» In this setting HBSL gets 7.3%
> Noisy dictionaries..not only ?

Qut-of-domain evaluation

1. tokenization differs

2. domain differs

3. annotation conventions differ Q\




The annotation convention problem

» Several independently designed information sources are
combined
» They follow conflicting annotation conventions

Example
= = ADJ
;
ew
Numbers Foreing names l
PRON
oco
ADJ @ p NOUN
R = DET
il

*.




Impact of annotation and train/test mismatches

Fixing some annotation mismatches in type constraints

ar cs de el es fi fr id it sv
HBAL 27.9 104 8.8 8.1 8.2 13.3 10.2 11.3 9.1 10.1
HBAL + match 24.1 7.6 80 73 74 122 7.4 9.8 8.3 8.8
A -3 -28 -08 -08 -08 -11 -28 -15 -08 -13

Supervised experiments for Spanish

train train labels test error rate

ubT manual 2.4%
Europarl HBSL 4.2%
Europarl FREELING 6.1%
Europarl  Cross-lingual transfer (ambiguous) 8.2%

» Performance may be underestimated
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Conclusion

» We introduce a new, simple and efficient learning criterion

» Performance surpasses best reported results
» Results close to the best achievable performance ?
» Evaluation of such settings much be taken with great care

» Additional gains might be more easily obtained by fixing
systematic biases than by designing more sophisticated weakly
supervised learners




Thank you for your attention

Questions ?

Tools and resources available from http://perso.limsi.fr/wisniews/weakly


http://perso.limsi.fr/wisniews/weakly
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