

HIGHLIGHTS

- Participation to the word-level quality estimation task for English to Spanish translations (binary condition)
- Use of 16 'dense' features \oplus binary classifier trained with a specific method to optimize the f₁ score

FEATURES

- 16 'dense' features (no lexicalized information)
- Three main classes of features

pseudo-references (e.g. target word in the pseudo-reference)

Fluency Features

3 different language models

- a 'traditional' 4-gram LM
- a continuous-space 10-gram LM
- a 4-gram LM based on POS

Prior probability

• Most useful features: language models + prior probability

EXPERIMENTS

- Experiments on a internal test set made of 200 sentences
- Overall performance is not good enough to consider the use of such a system in a real-word application
- Results on the official test set is much worse

_				
		Random Forest	Random Classifier	Always BAD
kinds of information	VERB	0.73	0.45 +0.28	0.58 +0.15
 Compute the score for each POS 	ADJ	0.70	0.42 + 0.28	0.53 +0.17
	NOUN	0.69	0.41 +0.28	0.52 +0.17
 1st baseline: choose the label ran- domly 	ADV	0.69	0.42 + 0.27	0.54 + 0.15
	PRON	0.72	0.46 + 0.26	0.60 +0.12
– 2nd baseline: always predict BAD	overall	0.67	0.41 +0.26	0.52 +0.15
	DET	0.62	0.40 + 0.22	0.49 + 0.13
• We are better at predicting the 'quality' of plain words	PUNCT	0.56	0.35 +0.21	0.43 +0.13
	ADP	0.61	0.42 + 0.19	0.52 +0.09
	CONJ	0.57	0.38 +0.19	0.47 + 0.10

LIMSI Submission for WMT'14 QE Task Guillaume Wisniewski^{1,2} Nicolas Pécheux^{1,2} Alexandre Allauzen^{1,2} François Yvon¹

(1) LIMSI–CNRS, Orsay France

(2) Université Paris Sud, Orsay France

LEARNING STRATEGY

- The QE task can naturally be framed as a binary classification problem
- Logistic Regression and Random Forest as 'base' classifier
- Optimization of the f₁ score on the train set:
 - 1. train a classifier
 - 2. enumerate all possible trade-offs between recall and precision by varying the threshold of the decision function $(O(n \cdot \log n))$
 - 3. find the trade-off with the optimal f_1 score (O(n))

Prediction performance for the two learning strategies considered

Classifier	thres.	recall _{BAD}	precision _{BAD}	f ₁ score
Random forest	0.43	0.64	0.69	0.67
Logistic regression	0.27	0.51	0.72	0.59

AT WE HAVE LEARNED

- Predicting confidence at the word level is hard
- Need for more information about preprocessing and annotation convention
- Difficult to interpret results

NOWLEDGMENTS

work was partly supported by ANR project Transread (ANR-12-CORD-0015). Warm thanks to Quoc Khanh or his help for training a Soul model for Spanish.

